
1

International Partnership on Innovation

SAMS - Smart Apiculture Management Services

Deliverable N°4.1

Report on Data Management

Work package 4 Decision Support System

Horizon 2020 (H2020-ICT-39-2017)

Project N°780755

This project has received funding from the European Union´s Horizon 2020

research and innovation programme under grant agreement N° 780755. The

sole responsibility for the content of this document lies with the authors. It does

not necessarily reflect the opinion of the EU.

2

Project information

Lead partner for the
deliverable

Latvia University of Life Sciences and Technologies,
Faculty of Information Technologies, Department of
Computer Systems.
Lead researcher and Project lead:
Asoc.prof. Dr. Aleksejs Zacepins

Document type Report

Dissemination level Public

Due date and status of the
deliverable

31.08.2019 Incl. status/Date of upload

Author(s) Dr. Aleksejs Zacepins, Dr. Vitalijs Komasilovs, Armands
Kviesis, Olvija Komasilova

Reviewer(s) GIZ

This document is issued by the consortium formed for the implementation of the SAMS project

under Grant Agreement N° 780755.

SAMS consortium partners

Logo Partner name Short Country

Deutsche Gesellschaft für

Internationale Zusammenarbeit

(GIZ) GmbH (Coordinator)

GIZ Germany

University of Kassel UNIKAS Germany

University of Graz (Institute for

Biology)
UNIGRA Austria

Latvia University of Life Sciences

and Technologies
UNILV Latvia

ICEADDIS ï IT-Consultancy PLC ICEADDIS Ethiopia

Oromia Agricultural Research

Institute, Holeta Bee Research

Center

HOLETA Ethiopia

University Padjadjaran UNPAD Indonesia

3

Commanditaire Vennootschap

(CV.) Primary Indonesia
CV.PI Indonesia

List of Abbreviations

API Application Programming Interface

Back-end Data access layer (server side) of an application

Collection MongoDb stores documents (records) in collections. Collections are analogous

to tables in relational databases

DBMS Database Management System

DSS Decision Support System

DW Data Warehouse

Front-end Presentation layer (usually Web based) of an application

HIVE HIVE measurement system (WP3)

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token, an open, industry standard RFC 7519 method for

representing claims securely between two parties.

OAuth 2.0 Open standard for access delegation. OAuth 2.0 provides specific authorization

flows for web applications, desktop applications, mobile phones, and smart

devices.

POST HTTP request method

RegExp Regular expression, sequence of characters that define a search pattern.

REST Representational State Transfer

SQL Structured Query Language

UI User Interface

4

Summary of the project

SAMS is a service offer for beekeepers that allows active monitoring and remote sensing of

bee colonies by an appropriate and adapted ICT solution. This system supports the beekeeper

in ensuring bee health and bee productivity, since bees play a key role in the preservation of

our ecosystem, the global fight against hunger and in ensuring our existence. The high

potentials to foster sustainable development in different sectors of the partner regions are they

are often used inefficient.

Three continents - three scenarios

(1) In Europe, consumption and trading of honey products are increasing whereas the

production is stagnating. Beside honey production, pollination services are less developed.

Nevertheless, within the EU 35% of human food consumption depend directly or indirectly on

pollination activities.

(2) In Ethiopia, beekeepers have a limited access to modern beehive equipment and bee

management systems. Due to these constraints, the apicultural sector is far behind his

potential.

(3) The apiculture sector in Indonesia is developing slowly and beekeeping is not a priority in

the governmental program. These aspects lead to a low beekeeper rate, a low rate of

professional processing of bee products, support and marketing and a lack of professional

interconnection with bee products processing companies.

Based on the User Centered Design the core activities of SAMS include the development of

marketable SAMS Business Services, the adaption of a hive monitoring system for local needs

and usability as well as the adaption of a Decision Support System (DSS) based on an open

source system. As a key factor of success SAMS uses a multi stakeholder approach on an

international and national level to foster the involvement and active participation of beekeepers

and all relevant stakeholders along the whole value chain of bees.

The aim of SAMS is to:

¶ enhance international cooperation of ICT and sustainable agriculture between EU

and developing countries in pursuit of the EU commitment to the UN Sustainable

Development Goal (SDG NÁ2) ñEnd hunger, achieve food security and improved

nutrition and promote sustainable agricultureò

¶ increases production of bee products

¶ creates jobs (particularly youths/ women)

¶ triggers investments and establishes knowledge exchange through networks..

Project objectives

The overall objective of SAMS is to strengthen international cooperation of the EU with

developing countries in ICT, concentrating on the field of sustainable agriculture as a vehicle

for rural areas. The SAMS Project aims to develop and refine an open source remote sensing

technology and user interaction interface to support small-hold beekeepers in managing and

monitoring the health and productivity in their own bee colonies. Highlighted will be especially

the production of bee products and the strengthening of resilience to environmental factors.

5

¶ Specific objectives to achieve the aim:

¶ Addressing requirements of communities and stakeholder

¶ Adapted monitoring and support technology

¶ Bee related partnership and cooperation

¶ International and interregional knowledge and technology transfer

¶ Training and behavioural response

¶ Implementation SAMS Business cooperation

6

Contents

SAMS consortium partners ... 2

Summary of the project .. 4

Project objectives ... 4

Contents ... 6

List of tables / figures ... 6

1. Background .. 8

1.1 Scope of the Deliverable ... 8

2. Data Warehouse Concept .. 8

3. Database management system ..10

4. Data flows ..11

5. User Interface ..13

6. WebApi ...14

6.1 Nodes ..14

6.2 Sensor mapping ...16

6.3 Authentication and authorization ..19

7. DW Core ...22

7.1 Swamp ...23

7.2 Vaults ...23

7.3 Reports ..27

7.4 Core internal components ..29

8. Deployment components and infrastructure ..30

9. Further development ...32

List of tables / figures

Figure 1. SAMS Data warehouse architecture .. 9

Figure 2. Demonstration of hardware data-in package schema ... 11

Figure 3. Example of WEB system dashboard.. 14

Figure 4. Different types of DW nodes .. 14

Figure 5. Example of user nodes in the system .. 15

Figure 6. Metadata of the user node ... 15

Figure 7. Example of sensor mapping ... 17

Figure 8. An example of node with its source mapping .. 18

Figure 9. Example of non-interactive flow for device authentication ... 20

Figure 10. Auth0 login page .. 21

Figure 11. Example of interactive flow for authentication .. 21

Table 1. Summary of potential records for different time periods ... 24

Figure 12. List of available reports .. 28

7

Figure 13. Report creation ... 28

Figure 14. Example of the raw temperature measurements ... 28

Figure 15. Conceptual diagram of the DW Core ... 30

Figure 16. Deployment structure of the DW .. 31

8

1. Background

The Latvia University of Life Sciences and Technologies develops the Data Warehouse (DWH)

system within the SAMS project. The DW is important part of the project as acts as a data

storage and analysis unit for all beehive data collected by the SAMS HIVE measurement

systems developed by the University of Kassel (UNIKAS). All collected data is sent from the

HIVE systems via Wi-Fi / Internet to the data warehouse system for storage and further

processing. At the end, processed and analysed data will be used to support local beekeepers

with information about the bee colony health status, productivity level and inform about some

deviations from normal colony state.

1.1 Scope of the Deliverable

This report describes the development process of the SAMS data warehouse from all the

beginning to the functioning prototype. As well data management procedures within the DW

are described in this report.

2. Data Warehouse Concept

The following chapter explains the conceptual design of data management solution for the

SAMS project. The solution is designed upon several major functional requirements:

¶ receive data from a various hive measurements systems (hardware configurations);

¶ store and process received data according defined rules;

¶ provide data output facilities.

In general computing systems a data warehouse (DW) can be considered as a universal

system, which is able to operate with different data inputs and have flexible data processing

algorithms. By the definition data warehouse is like an intermediate layer between data

provider systems and data consumer systems or end-users. DW provides customizable

facilities for data storage management, processing, analysis and output.

Within SAMS project DW is developed with aim to help beekeepers run the apiary more

effectively by utilising higher amount of available data and accumulated data interpretation

knowledge.

Architecture of the developed DW is demonstrated in Figure 1.

9

Figure 1. SAMS Data warehouse architecture

DW consists of three modules:

1. Core ï main data storage and processing module; it receives data about various

beekeeping objects in predefined format and distributes it through number of vaults and

reports, which apply needed transformation to the data (e.g. aggregation, modelling,

decision making);

2. WebApi ï intermediary module between ñouter worldò and DW Core; it provides number

of HTTP interfaces for machine-to-machine interaction with external systems via

Internet; main functions of the unit include request authentication and authorization,

user private workspace management, data-in and data-out interface configuration and

data conversion to/from DW Core supported formats;

3. Graphical user interface ï single-page web application provides user convenient way

for managing the sources of incoming data (e.g. hives with measurement devices) and

getting insights into produced outputs (e.g. reports).

Architecture of DW is developed considering flexibility and extensibility of each main data

management stage:

¶ data input functionality from various data sources, for example data files uploaded

manually via custom user interface or via automated (scheduled) scripts, a hive

measurement system configured to send data in accepted format, or third-party

services providing needed data (e.g. weather station);

¶ data storage suitable for different measurement types, for example temperature,

weight or audio recordings, intermediate aggregation and modelling results; and

suitable for different data time granularity, for example minutely, hourly or daily

recordings;

¶ data processing is organized using modular approach which allows building

flexible aggregation and modeling pipelines, where raw incoming data is pushed

through a number of transformation steps resulting in useful derivations and reports

for end users.

DW is built in the way that incoming data are processed almost immediately by involving

different models for data aggregation and reporting. Modular architecture of the solution

ensures isolation boundaries both for reliability reasons, maintenance and development

considerations.

10

Mentioned modules are described in details in the following chapters of the document.

3. Database management system

SAMS data warehouse is essentially a solution for beekeeping data recording, transformation

and reporting according to developed rules and schemas. However low level data storage topic

is out of the project scope (e.g. data organization on disks). For the purpose of such low level

data storage ready database management system (DBMS) should be used.

UNILV previously had experience with hive temperature recordings and used MySQL DBMS

as a data storage. Overall the experience with MySQL can be considered successful, the

solution recorded data about local test apiary for 7 years. However few shortcomings arose

during these years.

¶ Over the years the volume of raw measurement table have significantly grown.

Taking into account data model (normalized, one record per measurement) and

indexing needs database maintenance was complicated and performance

degraded. It was improved to some extent by introducing table partitions and

optimized vendor-specific SQL queries.

¶ Majority of data usage cases (data-out queries) were oriented on aggregated

values (e.g. temperature changes over a week, last measurements from particular

device, etc). Due to data model such queries were not effective and workarounds

with triggers were introduced.

¶ Data model was designed to store measurements coming from sensors (which

represent particular hives). However over the years due to hardware failures or

apiary relocations sensors were changed between devices and hives, leading to

overcomplicated and untrackable device-sensor-hive data model.

Database management system for SAMS DW was selected taking into account previous

experience with strict SQL DMBS and addressing the aforementioned issues. UNILV had seen

reasonable use-case for NoSQL DBMS, and in particular selected MongoDB document

oriented database as a primary storage for SAMS DW. Considered advantages of this

MongoDB database (and NoSQL technology in general) were as follows:

¶ data denormalization is usual practice for NoSQL databases, which opens a wide

range of options for data pre-aggregations and reports;

¶ document oriented data storage from one hand does not have strict schema and

can be flexibly changed over prototyping cycles, and from another hand it allows

more efficient record organization for given SAMS use-case (more details in next

chapters);

¶ potentially MongoDB can be shared across multiple hosts in case database grows

rapidly.

From development project (source code) organization perspective whole data storage and

processing logic is implemented within the application making development and deployment

process faster and easier, for example, no need for data schema definitions and custom stored

procedures for DBMS, possibility to run embedded DBMS for integration tests, less

deployment units during releasing process.

11

4. Data flows

As mentioned before SAMS DW consists of three main modules: Core, WebApi and User

Interface. SAMS HIVE measurement system (developed within WP3, responsible partner

UNIKAS) also can be considered as an additional external module.

All these modules are developed as independent units and use different technology stacks.

Therefore communication between these components should be platform independent. SAMS

DW solution follows RESTful architecture style and relies on HTTP communication between

its modules. For the message payload JSON notation is used. These technologies are widely

used in modern Web systems and are supported by all major development frameworks and

libraries.

DW data-in interface provides data input functionality for various data providers, mainly

focusing on the HIVE measurement system. It should be configured accordingly and sends

data in accepted format. Received data is validated and transformed within WebApi module

according to user configuration and then forwarded to Core.

For the sake of communication efficiency and to address offline operation cases for HIVE

hardware data-in package schema is as follows:

Figure 2. Demonstration of hardware data-in package schema

Such schema allows HIVE devices to send readings from multiple sources (usually sensors)

during a single communication session. Single data package supports multiple measurements

for each source, where each measurement has timestamp and one or more numeric values.

This approach makes it possible for HIVE devices to operate in offline mode, perform sensor

measurement recordings in needed frequency and communicate with DW according most

efficient schedule or when connection is available.

An example of data-in package is provided below:

[
 {
 "sourceId": "temp - sensor - 123",

12

 "values": [
 {
 "ts": "2019 - 08- 13T10:15:00Z",
 "value": 32.4
 },
 {
 "ts": "2019 - 08- 13T10:25:00Z",
 "v alue": 33.1
 }
]
 },
 {
 "sourceId": "audio - sensor - 234",
 "values": [
 {
 "ts": "2019 - 08- 13T10:17:00Z",
 "values": [0.24, 0.09, 1.42, 0.92, 0.86]
 },
 {
 "ts": "2019 - 08- 13T09:11:00Z",
 "values": [0.19, 0.35, 1.19, 1.25, 0.53]
 }
]
 }
]

Communication link between WebApi and Core modules is expected to be more stable and

reliable (single host or hosts within the same data center), therefore package schema for data

exchange between these modules is straight forward. Data about each object and particular

parameter is sent separately, however measurements are accepted in batches.

{
 "objectId": "hive - 987",
 "type": "temperature",
 "values": [
 {
 "ts": "2019 - 08- 13T10:15:00Z",
 "value": 32.4
 },
 {
 "ts": "2019 - 08- 13T10:25:00Z",
 "value": 33.1
 }
]
}

Such package schema is flexible enough for online data streams as well as for importing

historical data from files (large batches of measurements about single object).

DW data-out interface is designed to provide data output functionality for external data

consumers. Currently this data flow direction is utilized only by User interface for reports, but

potentially can be used by any other user or unmanned system as it works upon HTTP protocol

and JSON notation. Report is considered as a collection of numerical values about given object

mapped to time axis (e.g. raw parameter measurements, aggregated or modelled values, etc).

Report requests are proxied by WebApi module and forwarded to Core module without

intermediate transformations. Report response data package is designed for processing

values in column-wise approach and mainly used (but not limited) for plotting timeline charts.

It provides basic report metadata, supports multiple data series and auxiliary parameters. An

example of report data package is provided below:

{
 "code": "temperature",
 "name": "Raw temperature measurements",
 "aux": {
 "c1": 1.521,
 "ha7": 1563.528,
 },
 "data": [
 {
 "name": "timestamp",

13

 "values": [
 "2019 - 08- 07T04:36:00Z",
 "2019 - 08- 07T05:36:00Z",
 "2019 - 08- 09T08:36:00Z",
 "2019 - 08- 09T11:06:00Z",
 "2019 - 08- 09T12:06:00Z"
]
 },
 {
 "name": "hive - 111- top",
 "values": [
 22.812,
 23.312,
 24.125,
 25.5,
 25.437
]
 },
 {
 "name": "hive - 111- bottom",
 "values": [
 21.672,
 22.113,
 21.257,
 22.645,
 23.047
]
 }
]
}

In addition there are a number of data flows supporting user interface module but they are out

of the scope of current deliverable.

5. User Interface

By design DW provides REST API for all configuration, data-in and data-out operations. It can

be used by any user or unmanned system, but primarily was created for custom user interfaces

(e.g. localized mobile and Web applications).

For demonstration purposes and internal scientific usage a single page Web application was

created (front-end) by UNILV. It provides a graphical interface for DW configuration

maintenance, for accessing stored information and generate different reports. For front-end

development Angular and Bootstrap frameworks were used.

Front-end development for DW is not required for particular deliverable, however data

examples and its peculiarities shown in relevant parts of the report are based on developed

user interface.

An example of dashboard shows oversee of Ethiopean apiaries and active devices and

sensors:

14

Figure 3. Example of WEB system dashboard

6. WebApi

WebApi component provides an access to DW for external systems and components via REST

API. Its primary function is to transform incoming data-in requests from HIVE devices to

corresponding requests for Core component. It provides flexible and extendable platform for

data-in flow customization and configuration.

6.1 Nodes

Concept of Node in the context of SAMS DW stands for any logically distinct unit relevant for

user in terms of parameter measurements and storage. Main purpose of nodes is to provide

flexible abstraction layer between beekeeping objects (like hives and apiaries) and monitoring

infrastructure (sensors and devices). Currently DW supports (but not limited to) following types

of nodes: Group, Apiary, Hive, Hive element, Device and Other.

Figure 4. Different types of DW nodes

Nodes allow users to define the structure of his beekeeping objects (from a business

perspective) and configure relevant data sources for these objects. System supports building

of arbitrary hierarchy of nodes, which opens wide possibilities for structuring and organizing

beekeepers objects of interest. Example of user nodes in the system is shown below.

15

Figure 5. Example of user nodes in the system

Nodes support basic metadata, like name, type and free text location, and can be extended

with more attributes:

Figure 6. Metadata of the user node

Device type nodes have additional attribute Client ID used for coupling with HIVE hardware.

This ID is used as a device identifier and WebApi accepts measurements only from registered

devices.

16

Information about all nodes is stored in dedicated collection. In addition to metadata each node

record contains also references to its parent nodes (if any), owner username and workspace.

For debugging and monitoring purposes nodes are supplemented with last 10 measurements

for each parameter received through data-in interface for particular node. An example of node

record is as follows:

{
 "_id" : ObjectId("5c923b605d71560009a76674"),
 "name" : "Hive A1",
 "type" : "HIVE",
 "parentId" : "5c922e555d71560009a76381",
 "location" : "LV Lab",
 "ancestors" : [
 "5c922e1d5d71560009a7637f",
 "5c922e3f5d71560009a76380",
 "5c922e555d71560009a76381"
],
 "lastValues" : {
 "temperature" : [
 ...
]
 },
 "createdBy" : "auth0|5c922df82e67ef322347721e",
 "workspaceId" : "5d09d674c41479000914d065"
}

Latest 10 measurements are maintained using MongoDB features allowing complicated

conditional updates. Update query for pushing latest values looks similar to following:

db.nodes.update(
{
 "_id": "hive - 123"
},
{
 "$push": {
 "lastValues.temperature": {
 "$each": [{
 "ts": "2019 - 08- 19T10:05:19Z",
 "value": 22.14
 },
 {
 "ts": "2019 - 08- 19T10:15:25Z",
 "value": 23.56
 }
],
 "$sort": {
 "ts": - 1
 },
 "$slice": 10
 }
 }
}

)
In essence this operation takes raw timestamp-value pairs, pushes them to measurement

parameter array (temperature in the example), then sorts the array by timestamp in descending

order and slices 10 values. All of these manipulations are performed in a single atomic

operation.

6.2 Sensor mapping

By design DW data storage is organized by nodes and their parameters ï it means that data

about each node is stored separately and consistently regardless of the source of this data.

Such design is intentional and is based on UNILV experience running hive monitoring systems

over the years ï infrastructure of measurement system tends to change over time. There are

reasonable use cases when sensors are replaced and reallocated between hives, devices are

moved between apiaries, composition of device-sensor-hive chains tend to change in time.

17

Reconfiguring hardware on every infrastructure change is not feasible because it needs

beekeeping site visiting for hardware specialist. Therefore a layer of configuration is added to

WebApi for addressing such use cases.

WebApi uses sensor mapping concept. It implies that hardware solution (e.g. HIVE system)

provides measurements identified by distinct sources (usually sensors), and WebApi uses its

configuration to map these measurements to particular beekeepers object like hives or their

elements.

This solution covers not only the simplest cases, when single device corresponds to single

hive, but also more diverse configurations like shown on the picture below:

Figure 7. Example of sensor mapping

Corresponding source mapping would be as follows:

Source Node Key

temp@devX Hive A temperature

hum@devX Hive A humidity

temp1@devY Hive B temperature

temp2@devY Hive C temperature

hum1@devZ Hive B humidity

hum2@devZ Hive C humidity

Source mappings are stored in separate collection as documents like the following example:

{
 "_id" : "hum - LV- 307",
 "valueKey" : "humidity",
 "nodeId" : "5c6bb6885d71560009a76372"
}

Collection has number of unique indexes ensuring data consistency:

18

¶ _id ï default unique index ensures that the sensor is assigned to single node;

¶ nodeId, valueKey ï composite unique index eliminates contradictions by ensuring

that each node has only one source of particular parameter.

An example of node with its source mapping as visible in UI:

Figure 8. An example of node with its source mapping

Format of source ID is not fixed and WebApi accepts any arbitrary string provided by data

provider implying the string is globally unique (like GUID). For demonstration purposes and

easier debugging HIVE hardware uses short sensor name suffixed with device ID as a source

ID.

As a side effect source mapping concept addresses several security cases:

¶ single source can be assigned only to one node eliminating data leaks (if user

mapped his source to his node, nobody else will be able to map the same source

to another node);

¶ data-in requests from unrecognized sources are rejected preventing data pollution

and database bloating with dummy information (only registered data sources are

accepted for processing, everything else is discarded).

Combination of node, device and source registration from one hand creates additional

configuration burden for the DW user, but from other hand ensures strong security. For better

DW end-user experience common registration scenarios can be automated (e.g. registration

of HIVE hardware with typical sensor configuration).

During data-in request handling, WebApi reads source ID from incoming data package, tries

to find matching node in source mapping configuration, and if successful, composes Core data-

in package with appropriate node ID and parameter (value key). This approach significantly

simplifies infrastructure reconfiguration ï in case any element of device-sensor-hive chain has

changed, user has to reassign sources to proper nodes without the need to reconfigure

hardware.

19

6.3 Authentication and authorization

On a high level WebApi acts as a proxy between DW core and external Internet. In addition to

described node, device and source mapping configurations WebApi also performs user and

device authentication and authorization. As WebApi is designed to be used by external

modules (like Web based user interface or HIVE hardware solution) it relies on OAuth 2.0

access delegation standard, where users delegate their access to DW for these external

modules.

SAMS DW solution uses authentication and authorization services provided by Auth0 universal

platform (https://auth0.com/). Auth0 is ready to use platform with wide range of built-in

authorization related functionality and integration options. In particular SAMS DW uses specific

authorization flows for Web and non-interactive applications, completely delegates user

credential handling and access administration functionality to the platform. From development

perspective usage of Auth0 platform removes the need to create custom solution for secure

user credential storage, user experience for Sign-in and Log-in flows, simplifies administration

tasks.

Technically OAuth 2.0 authorization and authentication relies on access tokens which are

provided on every request to REST API. Access tokens are issued to external clients by an

authorization server and usually contain basic information about user and means for token

validation. In his case Auth0 authenticates user or device and issues JWT access token which

contains user ID (subject) and expiration time details. Cryptographic signature of the token

ensures that it is issued by authorized party. Such access token is sent to WebApi on every

request and is validated by checking expiration time and signature.

Non-interactive clients

HIVE device authentication and authorization is performed using non-interactive flow. This flow

is designed specially for machine-to-machine interaction (HIVE device to WebApi in this case)

and imply that client side is considered as ñtrustedò. Technically it means that each device is

configured with individual credentials (client ID and secret). Then according to the schedule

device exchanges these credentials for the access token in non-interactive mode. Obtained

token is used for sending data-in packages until it is expired (by default 24 hours) and has to

be reviewed again. Following sequence diagram shows this scenario:

20

Figure 9. Example of non-interactive flow for device authentication

For additional security WebApi restricts requests from non-interactive clients (HIVE devices)

only to data-in flow, all other endpoints available only for interactive clients described below.

Access token is included into header of data-in request as follows:

POST /api/data HTTP/1.1
Host: sams.science.itf.llu.lv
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik1VSTRNRGc....
Content - Type: application/json

[
 {
 "sourceId":"temp - id - 123",
 "values":[
 {
 "ts":"2018 - 10- 10T23:06:00Z",
 "value":33.2
 }
]
 },
 {
 "sourceId":"hum - id - 234",
 "values":[
 {
 "ts":"2018 - 10- 10T23:06:00Z",
 "value":42.8
 }
]
 }
]

Single-page Web applications

Interactive single-page Web applications (the demonstration UI) are considered as ñuntrustedò

clients and credentials canôt be safely stored in them. Therefore upon Log-in users are

forwarded to Auth0 platform hosted Web page, where they have options to Sign-in or Log-in

using their credentials or social media accounts. After successful authentication user is

forwarded back to SAMS DW user interface, which acquires access token for given user

session (by default 3 hours). Below the Auth0 hosted login page is demonstrated

demonstrated:

21

Figure 10. Auth0 login page

The access token is not persistently stored anywhere and is red from internal application

variable until it is closed. Access token is included into header of any request to WebApi as

follows:

GET /api/nodes HTTP/1.1
Host: sams.science.itf.llu.lv
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik1VSTRNRGc....
Content - Type: application/json

Following sequence diagram shows interactive authentication and authorization flow:

Figure 11. Example of interactive flow for authentication

Access token itself is base64 encoded JSON document with payload similar to following:

{
 "iss": "https://sams - project.eu.auth0.com/",
 "sub": "google - oauth2|1095037446505 0712345",
 "aud": [

22

 "sams - dwh- web- api",
 "https://sams - project.eu.auth0.com/userinfo"
],
 "iat": 1566382753,
 "exp": 1566389953,
 "azp": "3Zv55BlAANYq7fLkNh1FGWMS5RA4sVEF",
 "scope": "openid profile email admin",
 "permissions": [
 "admin "
]
}

Token issuing (iat) and expiration (exp) timestamps are used for token validation, while subject

(sub) and scope represents user name and his permissions.

From user privacy perspective point of view SAMS DW does not store or process any user

sensitive and private information ï only his username is used as a reference to distinguish

between private workspaces of each user.

7. DW Core

What it is? Why needed?

DW Core is considered as the main data storage and processing unit. It is important to note,

that direct access from external Internet to Core is not possible, but provided via an

intermediate WebApi module that handles user authentication and authorization, applies

defined configuration and converts incoming data to a predefined format. The Core itself

consists of several services that ensure incoming (data-in) and outgoing (data-out) data flows

and provide infrastructure for internal data processing functionalities.

Core is extracted into separate module from WebApi in order to create abstract data

processing platform suitable for building complex data processing pipelines (data-in ᵼ

transformation A ᵼ transformation B ᵼ data-out) without focusing peculiarities of particular

domain (e.g. beekeepers hive organization).

Internally Core services are loosely coupled with each other via messaging service. First of all,

this design enables asynchronous data processing. And secondly, it has potential for sharing

Core services over multiple hosts.

The idea behind messaging between Core services is to ensure data flow through them as fast

as possible when data is ready for processing without specified schedule. When any

component is ready to provide new data, it notifies other components about it, and if there is

any consumer for new data, it immediately can start processing it.

In case of increased data processing demand (e.g. large batch of measurements was posted

to the Core) messaging service queues processing commands and executes them as

processing power is available. Also messaging service implements one-to-many (also called

topic-subscriber) notification model useful for pipelines when there are multiple consumers for

a single type of data. Infrastructure for messaging service is provided by ActiveMQ broker

software.

23

7.1 Swamp

In the event of new data is posted to the Core, it is inserted into a temporary data storage,

called Swamp. The main purpose of the Swamp is to handle data-in request as fast as possible

without losing received data.

Swamp stores data-in package and few metadata fields used for debugging and monitoring

purposes in dedicated collection in database:

{
 "_id": ObjectId("5ca89be2da6ad500097bd478"),
 "objectId": "5ca4115c5d7156000834c319",
 "type": "weight",
 "values": [{
 "ts": ISODate("2019 - 04- 05T21:52:42Z"),
 "value": 45.23
 }],
 "createdTs": ISODate("2019 - 04- 06T12:30:26.283Z"),
 "status": "Initial"
}

Upon saving the package data-in response is sent out and message that new data is available

is handled to messaging service. If there are no consumers for given type of data, then saved

package remains in Swamp until data consumer service is available. This design is deliberately

selected for cases when no implementation is available yet for given data type, so DW does

not lose received data even if particular data type is not recognized. Another potential scenario

covered by this design is temporary downtime of Core services in distributed environment ï

data will stay in Swamp until needed service is online.

7.2 Vaults

For internal organization of data processing DW Core uses concept of Vault. Vaults can be

considered as processing units with persistent storage which perform particular

transformations on incoming data. After processing data Vaults store results in dedicated data

storage and notify potential data consumers via messaging service. Data consumers in turn

are other Vaults, and in this way pipelines of Vaults are built in order to implement desired data

processing and/or modeling.

There can be distinguished the first order Vaults, which are responsible for processing raw

incoming data from Swamp. Technically such Vaults store raw data ñas-isò with all details,

however it is more implementation feature rather than limitation. For data consistency reasons

only one first order Vault per data type is allowed (in other words only one Vault can take data

out of Swamp).

The second order Vaults are not limited in number and are designed to consume data

previously processed by the first order Vaults. Multiple consumers of the processed data are

allowed, as well as multiple data sources are allowed for single second order Vault. These

Vaults are main components implementing desired data processing pipelines. In addition to

general data aggregation functionality Vaults can be used to implement complex models and

even handle processing to external services.

Data storage for Vaults were designed taking into consideration data volume estimations in

time perspective. First of all taking into account DW application domain (primary beekeeping,

24

potentially other agricultural fields) timestamps are stored with precision up to a minute. More

fine grained timestamps are not considered within SAMS project.

Numbers of potential records are analysed for different time periods taking into account various

recording frequencies (see table below):

Table 1. Summary of potential records for different time periods

Recording frequency

 1 / year 1/ month 1 / week 1 / day 1 / hour 1 / minute

T
o
ta

l re
c
o
rd

s

per minute 1

per hour 1 60

per day 1 24 1 440

per week 1 7 168 10 080

per month 1 4 28 672 40 320

per year 1 12 48 336 8 064 483 840

As it can be seen from the table, if each minutely measurement is saved as separate record,

then in course of a year significant number of records is accumulated. And these numbers are

are per single object and single parameter. Taking into account that saving new record is

computationally expensive operation (technically, insert operation in database involves

table/collection extension, index update, etc), different data models can be more effective.

Generic Core usage scenario is to handle frequent data-in events (store incoming data) and

occasionally provide processing results (which are usually aggregated in one way or another).

Thus data storage design is biased towards effective data write operations rather then data

read operations.

To address aforementioned cases data storage of Vaults is designed to store data in pre-

aggregated bundles while still ensuring access to raw values. MongoDB specific features are

actively used for this implementation.

First of all, Vaults store several values (usually, measurements or their derivatives) in a single

record. Currently Core uses hourly and daily data bundles. Each record contains references

to object ID, timestamp of the bundle and values of particular bundle.

The unique ID of the data bundle is a string concatenated from object ID and relevant part of

timestamp. For example, ID ñhive - 123:2019082214 ò corresponds to object hive - 123 and

hour from 14:00 to 14:59, day 22nd of August, 2019. Such string based ID provides very

effective indexing covering main use cases. Data queries are effectively handled by RegExp

engine of MongoDB like follows:

¶ finding records for given object
o db.temperature_hourly.find({ _id: /^hive - 123/})

¶ filtering records by timestamp
o db.temperature_hourly.find({ _id: /^hive - 123:201904/})

db.temperature_hourly.find({ _id: {

 $gte: "hive - 123:20190410",

 $lte: "hive - 123:20190415"

25

} })

¶ ordering records.

Storing object ID and timestamp as separate fields would require additional indexing on these

fields, which in turn would lead to increased load for write operations and consumption of

additional disk space.

Detailed values of the data bundle are stored as embedded document, which consists of key-

value pairs:

¶ key is reference to timestamp element (minute for hourly bundles, hour for daily

bundles);

¶ value is scalar or array type numerical information.

New values are added to this embedded document as they are provided to Core. MongoDB

effectively handles such manipulations on records and treats them as update operations rather

then insert operations. In case of relational database similar solution would imply a table with

ID and number of columns corresponding to each timestamp element.

In addition to storing detailed values data bundles contain pre-aggregated values, which are

computed on-the-fly when new data is added to the bundle. An example of hourly data bundle

for object with ID ñhive - 123ò, day 10th of April, 2019 and three detailed values for 16:04,

16:24 and 16:45 is provided below. Fields count and sum can be used for quick average value

calculation for the whole data bundle.

{
 "_id" : "hive - 123:2019041016",
 "count" : 3,
 "max" : 21.700000762939453,
 "min" : 21.600000381469727,
 "sum" : 64.9000015258789,
 "values" : {
 "04" : 21.700000762939453,
 "24" : 21.600000381469727,
 "45" : 21.600000381469727
 }
}

 Corresponding command for storing new value is as follows:

db.temperature_hourly.update(
 {
 _id: "hive - 123:2019082212",
 "values.56": { $exists: false }
 },
 {
 $inc: { count: 1, sum: 23.456 },
 $max: { max: 23.456 },
 $min: { min: 23.456 },
 $set: { "values.56": 23.456}
 },
 { upsert: true }
)

This command issues update operation for the database with upsert flag, which means it will

use existing bundle if it exists, otherwise it will create new bundle. In update portion of the

command it performs pre-aggregation and sets detailed values in embedded document. Whole

command is performed as atomic operation and is highly effective in terms of performance.

26

Also taking into account filtering conditions, this command will fail on attempt to rewrite already

existing value. This behaviour is expected and selected by design to increase data

consistency.

There are cases for the second order Vaults when data rewrite is legitime operation, for

example, daily average temperature should be recalculated when new hourly information is

added. This situation might be addressed in two ways:

¶ wait until data about all hours is loaded and only then initiate daily calculations;

¶ recalculate daily data every time hourly information is changed.

Each of these approaches have drawbacks. Expecting that all hours will be loaded is not

feasible as measurement hardware might fail and some hours will be missing. From other hand

recalculations after every change in detailed data might be computationally expensive.

Core tries to combine these two approaches by postponing recalculations until detailed data

is stable. In other words, when new data is received, all detailed operations are processes first

(e.g. hourly bundles), and then information about changed bundles is messaged to consuming

Vaults for processing and, potentially, recalculations.

Vaults that expect data recalculations use slightly different queries for storing the data. First of

all detailed values are stored (or replaced if already exist) and updated or inserted record is

queried:

db.temperature_daily.findAndModify({
 query: { _id: "hive - 123:20190822" },
 update: { $set: { "values.14": 21.5}} ,
 new: true,
 upsert: true
})

Then pre-aggregated fields are calculated and stored:

db.temperature_daily.update(
 { _id: "hive - 123:20190822" },
 { $set: { count: 9, sum: 198.53, min: 20.153, max: 23.67 } }
)

As described before when data bundle is created or updated, Vault sends notification message

to potential consumers of new data (other Vaults). Depending on peculiarities of consumer

Vault it can use already pre-aggregated values, or it also can use detailed values for custom

data transformation. For this purpose Core relies on flexible query language available in

MongoDB. For example, to query only aggregated values following query is used (note how

whole values embedded document is excluded from query result):

db.temperature_hourly.fin d({ _id: ñhive-123:2019082214ò}, { values: 0})

Currently SAMS DW Core supports all parameters provided by HIVE devices, which are:

¶ temperature measurements from the inside (above bee nest) and outside of

the hives, detailed values are stored in hourly data bundles and aggregated into

daily bundles;

¶ humidity measurements from outside the hives, similarly, stored in hourly and daily

data bundles;

¶ weight readings from scales under the hive, stored in hourly data bundles only;

27

¶ audio spectrum from sound recordings inside the hive (fast Fourier transform),

provided as array of 2048 values and stored and pre-aggregated as hourly bundles.

Core is functioning from January 2019, for this moment (August 2019) database occupies 1.2

GB on disks, including journaling information. Additional statistics are as follows:

¶ Number of documents (records): 78 301

¶ Average objects size: 7.4 KB

¶ Data size (uncompressed): 567 MB

¶ Index size: 1.27 MB

As it is seen from statistics, data vs index ratio is very effective. Also significant part of data

volume (553 MB) is occupied by unprocessed audio data.

7.3 Reports

Report in the context of DW Core can be considered as a component capable to extract data

from one or several Vaults and transform it to particular format. Transformation in this context

means different data presentation (e.g. plotting) rather than data processing (e.g. modelling)

which is done by Vaults.

At this stage Core supports several reports to overlook the stored data. It is possible to get raw

temperature, humidity and weight measurements. Audio data is still out of scope because raw

audio recording spectrum is useless if presented to user as-is and should be processed before

in order to extract frequency features (planned for DSS related tasks).

Core has dedicated REST endpoint for requesting report data with number of parameters:

¶ code ï report code;

¶ objectId ï the ID of object which data is requested;

¶ from / to ï timestamps defining requested data period (defaults recent 7 days);

¶ limit ï maximum number of records to be returned by the report (defaults to 5000).

The report request URL looks similar to following example:

https://dwh - core/reports/temperature/hive - 123
?from=2019 - 08- 18T21:00:00Z
&to=2019 - 08- 25T21:00: 00Z
&limit=2000

WebApi performs user authentication and authorization and proxies these requests to Core

without modification. DW User interface has basic reporting functionality. Several screenshots

show list of available reports:

28

Figure 12. List of available reports

After selecting one type of the report, user can select time period, search for a needed nodes

and chose them for report creation.

Figure 13. Report creation

The chart below shows example of the raw temperature measurements of one bee colony.

Figure 14. Example of the raw temperature measurements

Technically reports build queries for the database, transform results to column-wise

representation and return results as JSON documents. Reports effectively utilize data

aggregation pipeline available in MongoDB. It transforms detailed records into aggregated

results taking into account report parameters. Reports use such aggregation operations as

$match a) to filter by object ID and partial timestamp, and b) to fine-filter by full timestamp,

$project to transform record fields, $unwind to work with detailed array elements, $sample

29

to limit number of records, $sort for record ordering. Full example of aggregation command

looks like follows:

[{
 $match: {
 _id: { $gte: "hive - 123:20190815", $lte: "hive - 123:20190824" }
 }
}, {
 $project: {
 "_id": { $ arrayElemAt: [{ $split: ["$_id", ":"] }, 1] },
 "arr": { $objectToArray: "$values" }
 }
}, {
 $unwind: "$arr"
}, {
 $project: {
 _id: {
 $dateFromString: {
 dateString: { $concat: ["$_id", "$arr.k"] },
 format: "%Y%m%d%H%M"
 }
 },
 "values.temperature": "$arr.v"
 }
}, {
 $match: {
 _id: {
 $gte: ISODate("2019 - 08- 15T12:45:00.000Z"),
 $lte: ISODate("2019 - 08- 24T17:23:00.000Z")
 }
 }
}, {
 $sample: { size: 500 }
}, {
 $sort: { _id: 1 }
}]

Report time period is defined using parameters and helps to estimate number of expected

records for given period. Based on this information most effective data source can be selected,

for example, several days can be queried from hourly vault, while year-long period can be

queried from aggregated daily vaults. This information helps to balance load on the system

and should be based on DW usage scenarios.

7.4 Core internal components

Overall conceptual diagram of Core is as follows:

30

Figure 15. Conceptual diagram of the DW Core

8. Deployment components and infrastructure

UNILV suggest implementing DW as a cloud based data storage and processing unit with

capabilities to combine different data sources like existing systems and available on-apiary

generated data. Cloud-hosted solution has several benefits, such as simpler development and

maintenance process, availability to wider audience, and others. From other hands unexpected

cases may arise, such as Internet availability and network latency on client side.

For prototyping purposes SAMS DW is hosted on UNILV server with is physically located in

university campus, Jelgava city, Latvia. The infrastructure has broadband connection to the

Internet and is available from anywhere in the world (with exception if local restrictions applied

to user connections). Production-grade solution should be hosted on high-end cloud platform,

such as Amazon, Google, Microsoft or similar, with deliberate selection of geographical

location of data centers.

In order to facilitate faster development process, to support continuous integration and

to simplify deployment processes whole DW solution is divided into several deployment

components. Main DW components WebApi, Core and database are deployed as containers

on Docker platform. These containers are enclosed into local network and only WebApi is

accessible from external networks. Requests from public Internet are handled by Nginx server,

which hosts static UI and routes requests to WebApi container. Overall deployment structure

is as follows:

31

Figure 16. Deployment structure of the DW

Containers are controlled via Docker Compose utility. Configuration file (docker-compose.yml)

is as follows:

version: '2'
volumes:
 data:
services:
 mongo:
 container_name: bees - dwh- mongo
 image: "mongo:4"
 restart: always
 volumes:
 - data:/data/db
 web- api:
 container_name: bees - dwh- web- api
 image: "registry/bees - dwh- web- api"
 restart: always
 ports:
 - "127.0.0.1:8088:8080"
 depends_on:
 - "mongo"
 - "dwh - core"
 environment:
 - JAVA_OPTIONS=- Xmx300m
 - AUTH0_CLIENT=
 - AUTH0_SECRET=
 dwh- core:
 container_name: bees - dwh- core
 image: "registry/bees - dwh- core"
 restart: always
 depends_on:
 - "mongo"
 environment:
 - JAVA_OPTIONS=- Xmx300m

Configuration file for building WebApi and Core images (Dockerfile) is similar to this:

FROM openjdk:8 - jre
ENV TZ=Europe/Riga
RUN ln - snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
ARG VER=*
ADD ./build/libs/bees - dwh- web- api - ${VER}.jar /opt/app/bees - dwh- web- api.jar
WORKDIR /opt/app/
ENTRYPOINT java $JAVA_OPTIONS - Dspring.profiles.active=prod - jar bees - dwh- web- api.jar
EXPOSE 8080

Nginx server configuration is as follows:

server {
 listen 443 ssl;
 listen [::]:443 ssl;

 server_name sams.science.itf.llu.lv;

